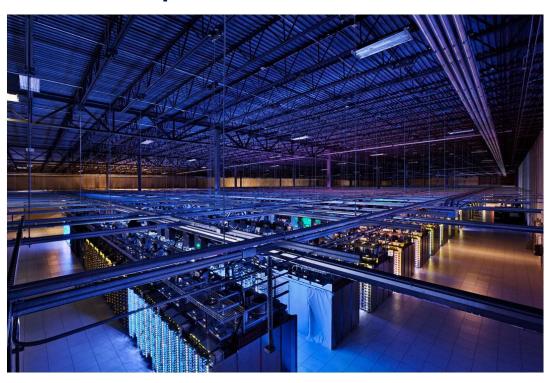
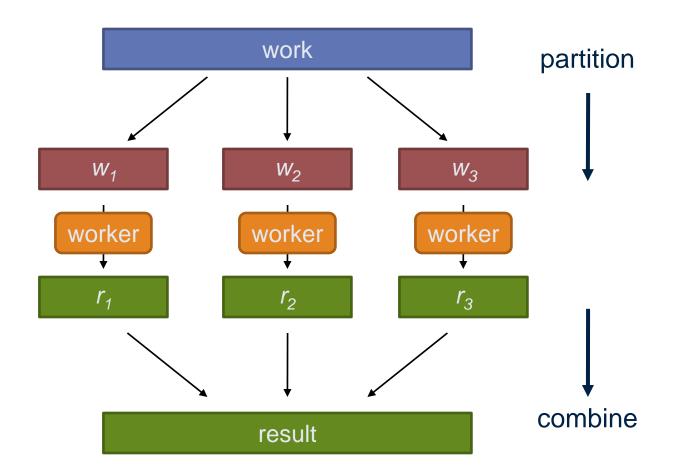


Laarge-Scale Data Engineering

The MapReduce Framework & Hadoop



Key premise: divide and conquer



Parallelisation challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we know all the workers have finished?
- What if workers die?
- What if data gets lost while transmitted over the network?

What's the common theme of all of these problems?

Common theme?

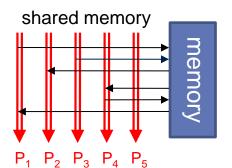
- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

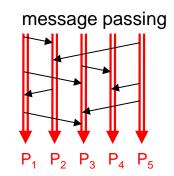
Managing multiple workers

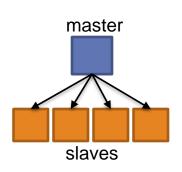
- Difficult because
 - We don't know the order in which workers run
 - We don't know when workers interrupt each other
 - We don't know when workers need to communicate partial results
 - We don't know the order in which workers access shared data
- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

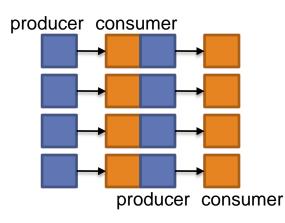
Current tools

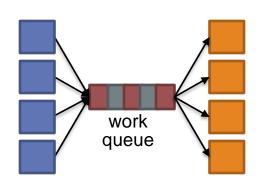
- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design patterns
 - Master-slaves
 - Producer-consumer flows
 - Shared work queues











Parallel programming: human bottleneck

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters and across datacenters
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - Lots of one-off solutions, custom code
 - Write you own dedicated library, then program with it
 - Burden on the programmer to explicitly manage everything
- The MapReduce Framework alleviates this
 - making this easy is what gave Google the advantage

What's the point?

- It's all about the right level of abstraction
 - Moving beyond the von Neumann architecture
 - We need better programming models
- Hide system-level details from the developers
 - No more race conditions, lock contention, etc.
- Separating the what from how
 - Developer specifies the computation that needs to be performed
 - Execution framework (aka runtime) handles actual execution

The data center *is* the computer!

MAPREDUCE AND HDFS

Big data needs big ideas

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster has limited bandwidth, cannot waste it shipping data around
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable, memory throughput is even better
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour
- Computation is still big
 - But if efficiently scheduled and executed to solve bigger problems we can throw more hardware at the problem and use the same code
 - Remember, the datacenter is the computer

Typical Big Data Problem

- Iterate over a large number of records

 Map

 Extract something of interest from each
 - Shuffle and sort intermediate results
 - Aggregate intermediate results Reduce
 - Generate final output

Key idea: provide a functional abstraction for these two operations

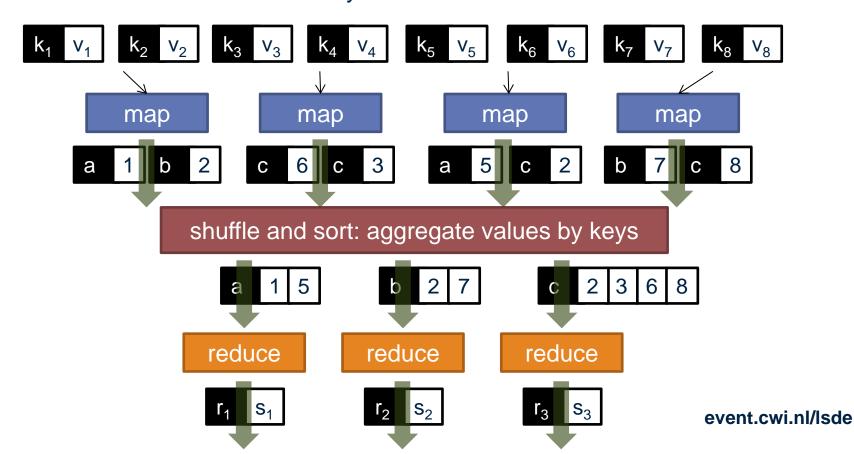
MapReduce

Programmers specify two functions:

map
$$(k_1, v_1) \rightarrow [\langle k_2, v_2 \rangle]$$

reduce $(k_2, [v_2]) \rightarrow [\langle k_3, v_3 \rangle]$

All values with the same key are sent to the same reducer



MapReduce runtime

- Orchestration of the distributed computation
- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles data distribution
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed file system (more information later)

MapReduce

Programmers specify two functions:

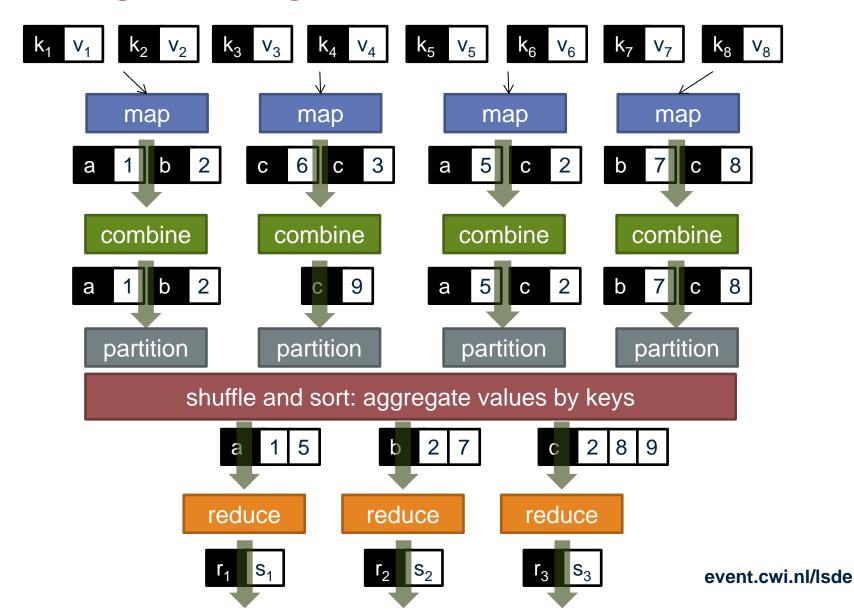
```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

- All values with the same key are reduced together
- The execution framework handles everything else
- This is the minimal set of information to provide
- Usually, programmers also specify:

```
partition (k', number of partitions) → partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

Putting it all together



Two more details

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

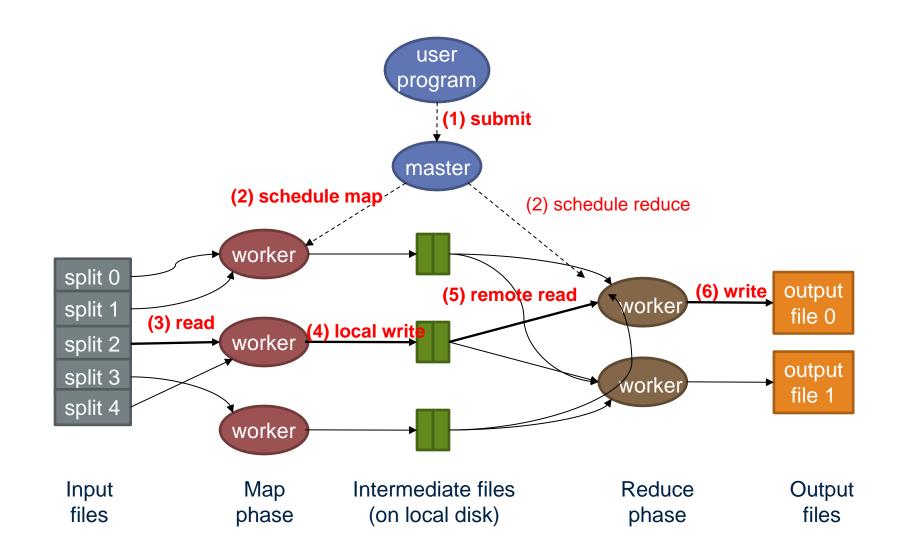
"Hello World": Word Count

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

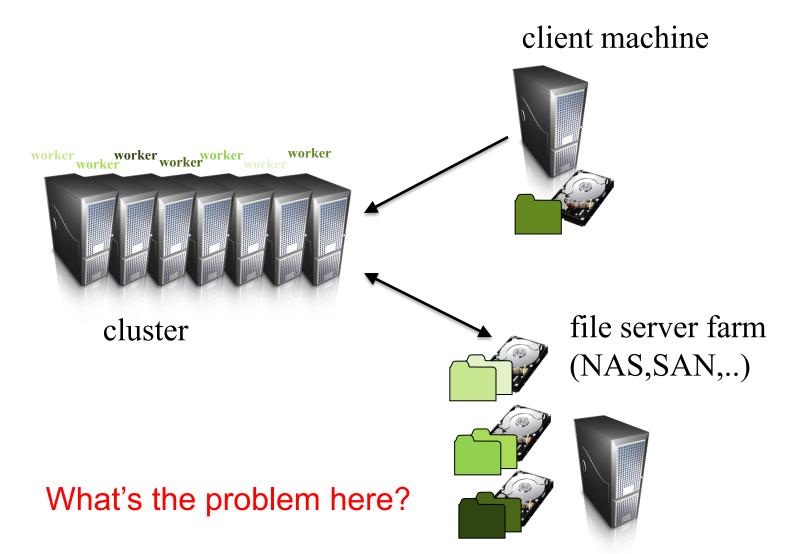
Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
    Emit(term, sum);
```


MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, now an Apache project
 - Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, ...
 - The de facto big data processing platform
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.



How do we get data to the workers?



Distributed file system

- Do not move data to workers, but move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local

- - Avoid network traffic if possible
 - Not enough RAM to hold all the data in memory
 - Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

Note: all data is replicated for fault-tolerance (HDFS default:3x)

GFS: Assumptions

- Commodity hardware over exotic hardware
 - Scale out, not up
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

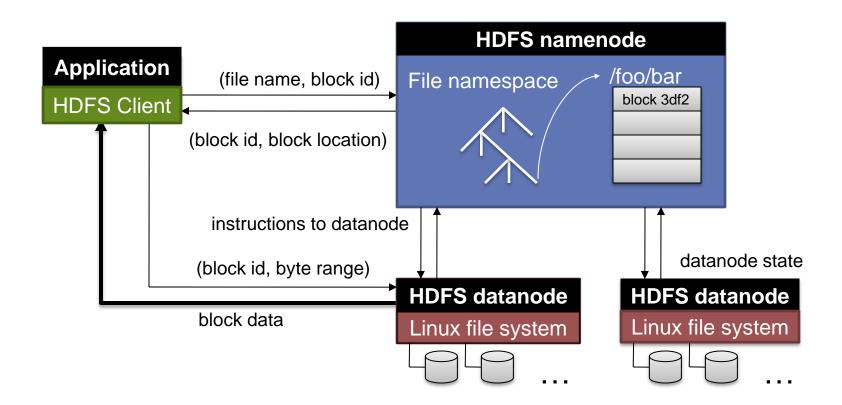
HDFS = GFS clone (same basic ideas)

From GFS to HDFS

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- Differences:
 - Different consistency model for file appends
 - Implementation
 - Performance

For the most part, we'll use Hadoop terminology

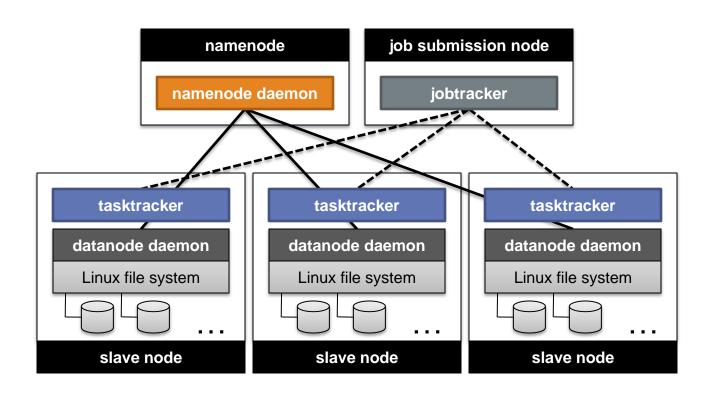
HDFS architecture



Namenode responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - Block re-replication and rebalancing
 - Garbage collection

Putting everything together

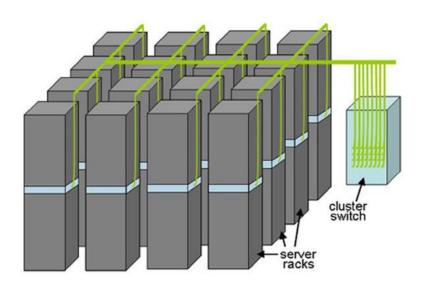


PROGRAMMING FOR A DATA CENTRE

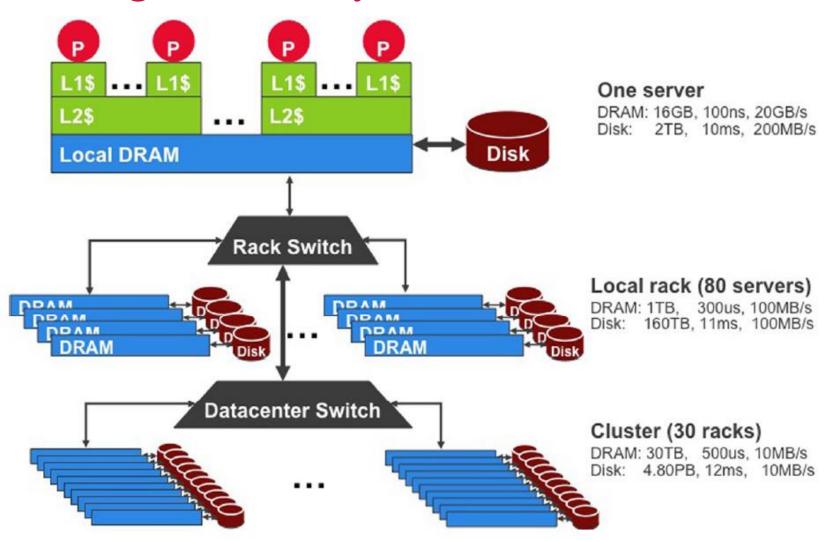
Programming for a data centre

- Understanding the design of warehouse-sized computes
 - Different techniques for a different setting
 - Requires quite a bit of rethinking
- MapReduce algorithm design
 - How do you express everything in terms of map(), reduce(), combine(), and partition()?
 - Are there any design patterns we can leverage?

Building Blocks



Storage Hierarchy



Scaling up vs. out

- No single machine is large enough
 - Smaller cluster of large SMP machines vs. larger cluster of commodity machines (e.g., 8 128-core machines vs. 128 8-core machines)
- Nodes need to talk to each other!
 - Intra-node latencies: ~100 ns
 - Inter-node latencies: ~100 μs
- Let's model communication overhead

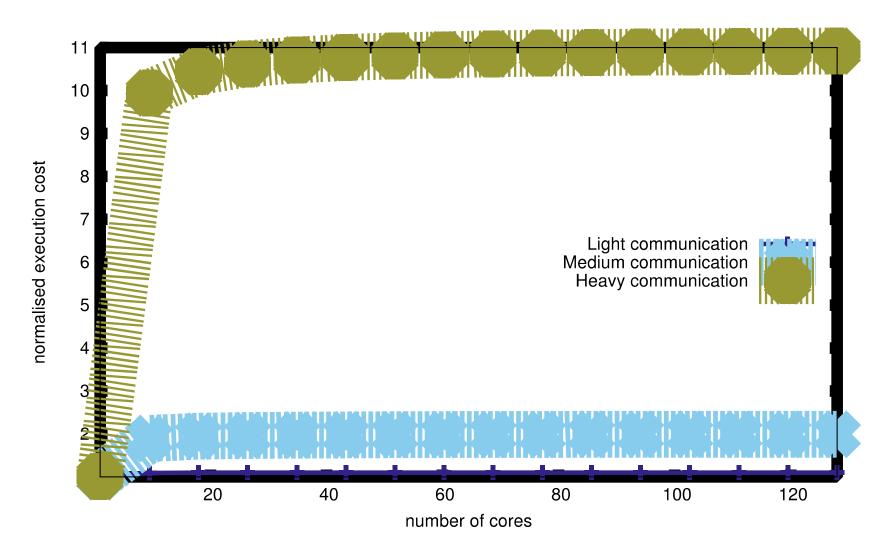
Modelling communication overhead

- Simple execution cost model:
 - Total cost = cost of computation + cost to access global data
 - Fraction of local access is inversely proportional to size of cluster
 - 1/n of the work is local
 - n nodes (ignore cores for now)

1 ms +
$$f \times [100 \text{ ns} \times (1/n) + 100 \text{ } \mu\text{s} \times (1 - 1/n)]$$

- Three scenarios:
 - Light communication: f = 1
 - Medium communication: f = 10
 - Heavy communication: f = 100
- What is the cost of communication?

Overhead of communication



Seeks vs. scans

- Consider a 1TB database with 100 byte records
 - We want to update 1 percent of the records
- Scenario 1: random access
 - Each update takes ~30 ms (seek, read, write)
 - -10^8 updates = \sim 35 days
- Scenario 2: rewrite all records
 - Assume 100MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Important Latencies

L1 cache reference	0.5 ns
L2 cache reference	7 ns
Main memory reference	100 ns
Send 2K bytes over 1 Gbps network	20,000 ns
SSD read one page (random)	100,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Read 1MB sequentially from SSD	2,000,000 ns
Magnetic Disk read one page (random)	10,000,000 ns
Read 1 MB sequentially from magnetic disk	20,000,000 ns
Send packet CA → Netherlands → CA	150,000,000 ns
Read 100MB sequentiall from disk	1,000,000,000 ns

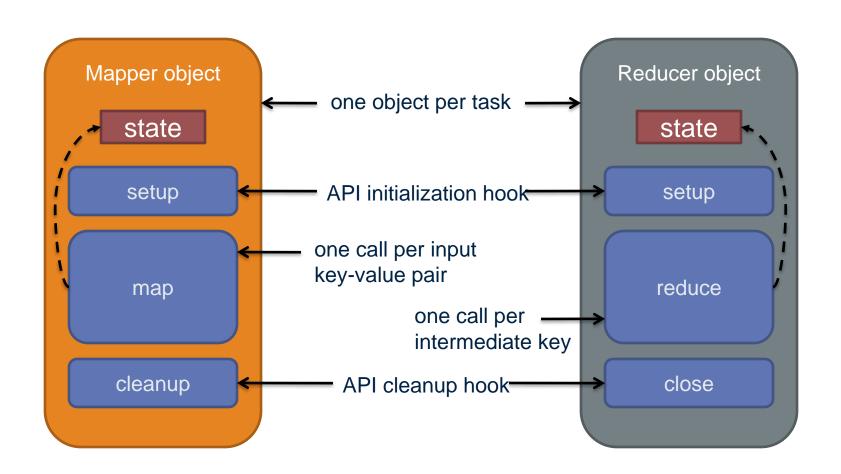
0.4MB/s

DEVELOPING ALGORITHMS

Optimising computation

- The cluster management software orchestrates the computation
- But we can still optimise the computation
 - Just as we can write better code and use better algorithms and data structures
 - At all times confined within the capabilities of the framework
- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Preserving State



Importance of local aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Word count: baseline

```
class Mapper
  method map(docid a, doc d)
    for all term t in d do
      emit(t, 1);
class Reducer
  method reduce(term t, counts [c1, c2, ...])
    sum = 0;
    for all counts c in [c1, c2, ...] do
      sum = sum + c;
    emit(t, sum);
```


Word count: introducing combiners

```
class Mapper
  method map(docid a, doc d)
  H = associative_array(term → count;)
  for all term t in d do
    H[t]++;
  for all term t in H[t] do
    emit(t, H[t]);
```

Local aggregation inside one document reduces Map output (the many duplicate occurrences of the word "the" now produce 1 output pair)

Word count: introducing combiners

```
class Mapper
  method initialise()
    H = associative array(term \rightarrow count);
  method map(docid a, doc d)
    for all term t in d do
      H[t]++;
  method close()
    for all term t in H[t] do
      emit(t, H[t]);
```

Compute sums across documents!

(HashMap H is alive for the entire Map Job, which processes many documents)

Design pattern for local aggregation

- In-mapper combining
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner design

- Combiners and reducers share same method signature
 - Effectively they are map-side reducers
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiners are optional optimisations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of integers associated with the same key

Computing the mean: version 1

```
class Mapper
  method map(string t, integer r)
    emit(t, r);
class Reducer
  method reduce(string, integers [r1, r2, ...])
    sum = 0; count = 0;
    for all integers r in [r1, r2, ...] do
      sum = sum + r; count++
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
```

Can we use a reducer as the combiner?

Computing the mean: version 2

```
class Mapper
  method map(string t, integer r)
    emit(t, r);
class Combiner
  method combine(string t, integers [r1, r2, ...])
    sum = 0; count = 0;
    for all integers r in [r1, r2, ...] do
      sum = sum + r; count++;
     emit(t, pair(sum, count);
class Reducer
  method reduce(string t, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) r in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
```


Computing the mean: version 3

```
class Mapper
  method map(string t, integer r)
    emit(t, pair(t, 1));
class Combiner
  method combine(string t, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
     emit(t, pair(sum, count);
class Reducer
  method reduce(string t, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
                                     Fixed!
```

Combiner must have input and output format = Reducer input format

Basic Hadoop API

Mapper

- void setup (Mapper.Context context)

 Called once at the beginning of the task
- void map (K key, V value, Mapper.Context context)
 Called once for each key/value pair in the input split
- void cleanup (Mapper.Context context)
 Called once at the end of the task

Reducer/Combiner

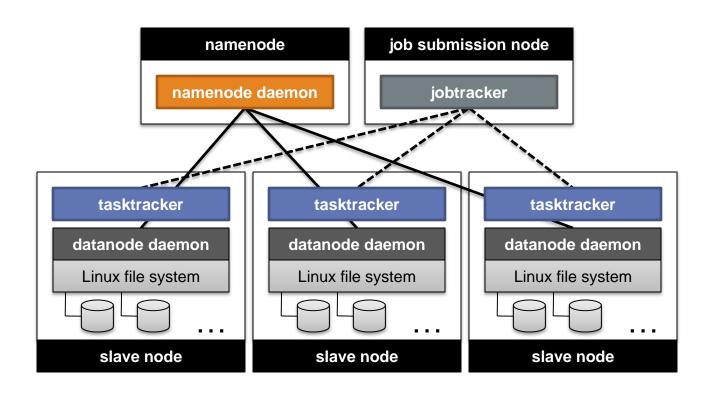
- void setup (Reducer.Context context)
 Called once at the start of the task
- void reduce (K key, Iterable < V > values, Reducer.Context ctx)

 Called once for each key
- void cleanup (Reducer.Context context)
 Called once at the end of the task

Basic cluster components

- One of each:
 - Namenode (NN): master node for HDFS
 - Jobtracker (JT): master node for job submission
- Set of each per slave machine:
 - Tasktracker (TT): contains multiple task slots
 - Datanode (DN): serves HDFS data blocks

Recap

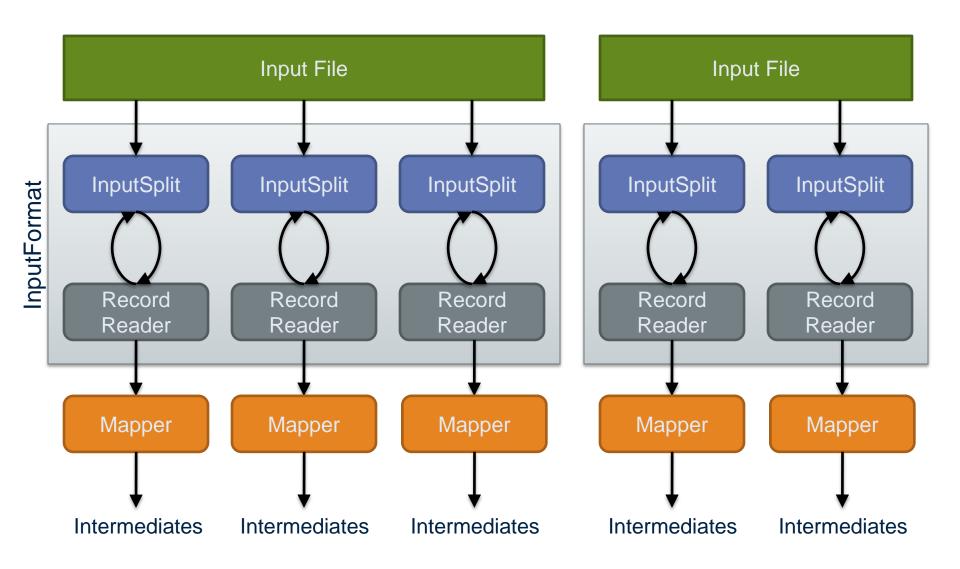


Anatomy of a job

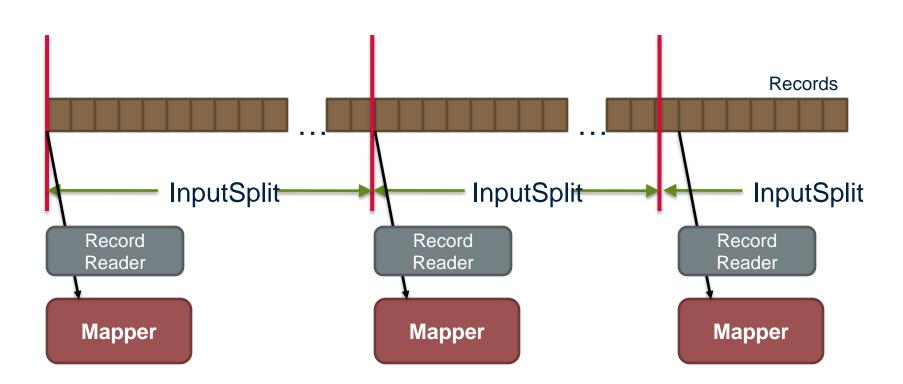
- MapReduce program in Hadoop = Hadoop job
 - Jobs are divided into map and reduce tasks
 - An instance of running a task is called a task attempt (occupies a slot)
 - Multiple jobs can be composed into a workflow
- Job submission:
 - Client (i.e., driver program) creates a job, configures it, and submits it to jobtracker
 - That's it! The Hadoop cluster takes over

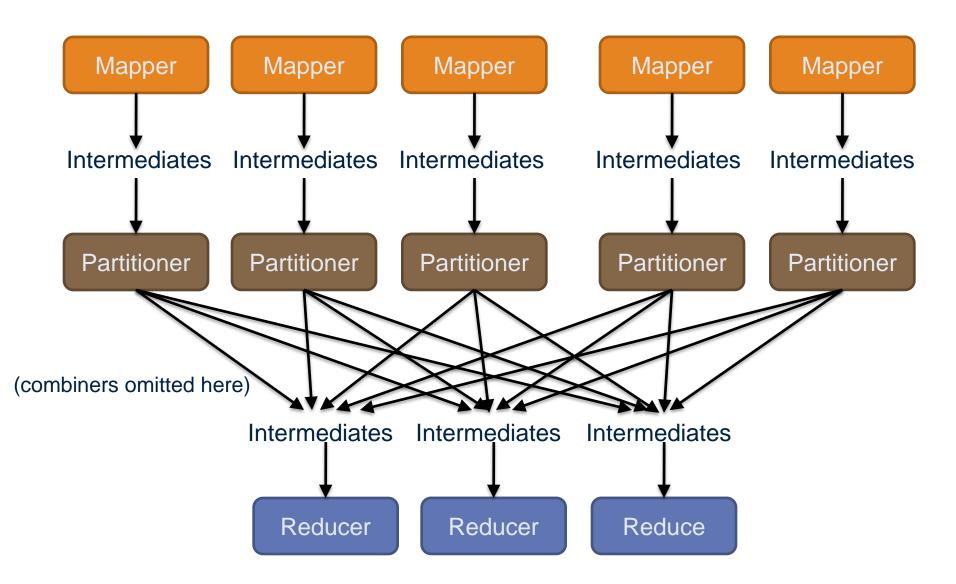
Anatomy of a job

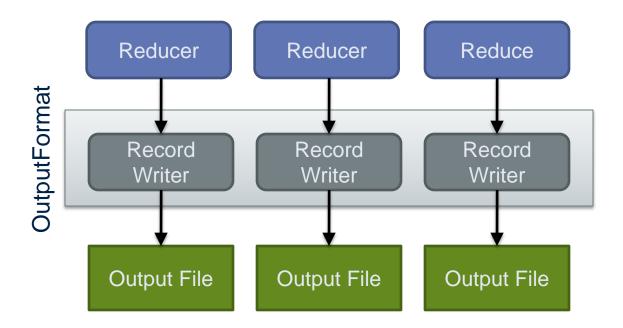
- Behind the scenes:
 - Input splits are computed (on client end)
 - Job data (jar, configuration XML) are sent to JobTracker
 - JobTracker puts job data in shared location, enqueues tasks
 - TaskTrackers poll for tasks
 - Off to the races



Client







Input and output

- InputFormat:
 - TextInputFormat
 - KeyValueTextInputFormat
 - SequenceFileInputFormat
 - **—** ...
- OutputFormat:
 - TextOutputFormat
 - SequenceFileOutputFormat
 - - ...

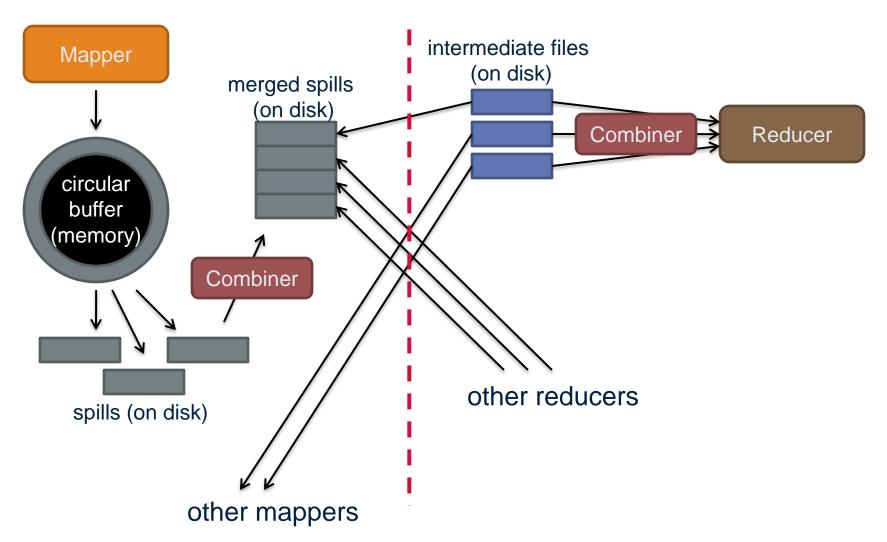
Complex data types in Hadoop

- How do you implement complex data types?
- The easiest way:
 - Encoded it as Text, e.g., (a, b) = "a:b"
 - Use regular expressions to parse and extract data
 - Works, but pretty hack-ish
- The hard way:
 - Define a custom implementation of Writable(Comparable)
 - Must implement: readFields, write, (compareTo)
 - Computationally efficient, but slow for rapid prototyping
 - Implement WritableComparator hook for performance
- Somewhere in the middle:
 - Some frameworks offers JSON support and lots of useful Hadoop types

Shuffle and sort in Hadoop

- Probably the most complex aspect of MapReduce
- Map side
 - Map outputs are buffered in memory in a circular buffer
 - When buffer reaches threshold, contents are spilled to disk
 - Spills merged in a single, partitioned file (sorted within each partition):
 combiner runs during the merges
- Reduce side
 - First, map outputs are copied over to reducer machine
 - Sort is a multi-pass merge of map outputs (happens in memory and on disk): combiner runs during the merges
 - Final merge pass goes directly into reducer

Shuffle and sort



Summary

- The difficulties of parallel programming
 - High-level frameworks to the rescue (Google MapReduce)
- Hadoop Architecture
 - MapReduce
 - HDFS
- MapReduce Programming
 - Word Count Examples
 - Optimization with combiners
 - Sequential access, Bulk Transfers
 - Vs small random accesses (memory, network, disk bottleneck)